Contents

<table>
<thead>
<tr>
<th>Information</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety rules</td>
<td>4</td>
</tr>
<tr>
<td>Symbols</td>
<td>7</td>
</tr>
<tr>
<td>Description: Features, lens system</td>
<td>8</td>
</tr>
<tr>
<td>Models</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System diagram</td>
<td>12</td>
</tr>
<tr>
<td>Incident-light equipment</td>
<td>14</td>
</tr>
<tr>
<td>Transmitted-light equipment</td>
<td>14</td>
</tr>
<tr>
<td>Objectives</td>
<td>16</td>
</tr>
<tr>
<td>Eyepieces</td>
<td>16</td>
</tr>
<tr>
<td>High-performance lighting</td>
<td>17</td>
</tr>
<tr>
<td>Leica L2 cold-light source</td>
<td>17</td>
</tr>
<tr>
<td>Graticules</td>
<td>18</td>
</tr>
<tr>
<td>Camera assembly for Leica S6 D and S8 APO</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>22</td>
</tr>
<tr>
<td>Interpupillary distance and exit pupil</td>
<td>23</td>
</tr>
<tr>
<td>Eyecups</td>
<td>23</td>
</tr>
<tr>
<td>Setting working distance and focusing</td>
<td>24</td>
</tr>
<tr>
<td>Zoom magnification changer</td>
<td>25</td>
</tr>
<tr>
<td>Dioptr adjustment</td>
<td>28</td>
</tr>
<tr>
<td>Photography with Leica S6 D and S8 APO</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What do I do if</td>
<td>33</td>
</tr>
<tr>
<td>Care and maintenance</td>
<td>34</td>
</tr>
<tr>
<td>Calculating total magnification and field diameter</td>
<td>37</td>
</tr>
<tr>
<td>Optical data</td>
<td>38</td>
</tr>
<tr>
<td>Dimension</td>
<td>41</td>
</tr>
<tr>
<td>Leica Microsystems</td>
<td>47</td>
</tr>
</tbody>
</table>
Dear Customer

Thank you for the trust you have shown in choosing one of our products. We hope you will have much enjoyment and success with your new stereomicroscope from Leica Microsystems.

With its new StereoZoom® line the Swiss Stereomicroscopy Business Unit offers a comprehensive range of stereomicroscopes for every application. The Leica L2 cold-light illuminator – also new – transforms any of the instruments into a compact, streamlined complete outfit of modern design. Possible applications range from inspection and assembly work, OEM and schools to quality assurance functions. The stereomicroscopes, cold-light source and stand are all antistatic to protect against ESD. A Terminator version is available for problematic working areas in electronics.

One of our major development goals was to make our new StereoZoom® line simple and intuitive to use. Nevertheless, please take the time to read these instructions. They will familiarize you with your stereomicroscope’s advantages and enable you to use it to best effect. If you have questions at any time, please contact your Leica representative or Leica Microsystems (Switzerland) Ltd, Heerbrugg, Switzerland. We will be glad to help you.

We place great emphasis on customer service – before and after purchase.
Read the instructions for use and safety instructions before putting the stereomicroscope into operation.

Leica S4 E, S6 E, S6, S6 T, S6 D and S8 APO stereomicroscopes are precision optical instruments for making technical and scientific objects, object details or specimens more easily visible by means of magnification. Stands, illuminators and accessories complete the equipment.

- Use of the instrument other than in the manner described in these instructions could result in personal injury or material damage.
- Never fit other equipment connectors or dismantle optical systems and mechanical parts unless the user manual gives express instructions for doing so.

The Leica S4 E, S6 E, S6, S6 T, S6 D and S8 APO stereomicroscopes are intended primarily for indoor use.

- If used outdoors the stereomicroscope must be protected against dust and moisture. Leica Microsystems electric illuminators and stands must not be used outdoors.

Repair work must only be carried out by service engineers trained by Leica Microsystems. Only original spare parts from Leica Microsystems are to be used.

- Make sure that personnel using this stereomicroscope have read and understood these instructions, especially the safety instructions.
- Take steps to ensure that Leica S4 E, S6 E, S6, S6 T, S6 D and S8 APO stereomicroscopes are only operated, serviced and repaired by authorized and trained personnel.
Safety instructions

Electrically operated equipment

Liquids
Handle liquids carefully.
Liquids spilt on the instrument
– can cause the stereomicroscope and other equipment to become electrically live and injure persons,
– can cause damage to the instrument.

Mains cable
Check regularly to ensure that the mains cable is undamaged and avoid jerking or pulling the cable hard.
Faulty mains cables
• can injure persons,
• can cause the stereomicroscope and other equipment to become electrically live and injure persons.

Ensure the cable is not in a position where someone could accidentally catch it, otherwise the instrument could tip over and fall, damaging itself or other equipment, or injuring people nearby.

Opening the instrument
Electrical equipment may only be repaired by authorized Leica personnel.
Disconnect the mains cable before opening the instrument. Touching the open instrument when voltage is applied may result in injury.

Mains voltage
Make sure that the instrument is set for the correct mains voltage. Incorrect setting can damage the instrument.
Connections

Only devices with the correct power rating may be connected to the transformers. Overloading can result in damage to the instrument.

Changing lamps

- Disconnect the mains cable from the mains supply before changing lamps.
- Never put your hand in the lamp housing or transmitted-light stand when the instrument is connected to the mains.
- Wait for filament lamps to cool down before changing. Touching hot filament lamps can result in burns.

Statutory regulations

Observe all statutory accident prevention and environmental protection requirements.

EC declaration of conformity

Electrically operated accessories for Leica S4 E, S6 E, S6, S6 T, S6 D and S8 APO stereomicroscopes are manufactured using state-of-the-art technology and carry an EC declaration of conformity.
Symbols

You will come across these symbols in this manual

Safety warnings
This symbol denotes information that must be read and acted upon without fail.
Disregarding safety warnings can put persons at risk!

Disregarding safety warnings can also result in malfunctioning or damage to the instrument.

Warning against exposed hot points, e.g. filament lamps.
Risk of burns if disregarded!

Important information
This symbol denotes additional information or explanations to assist understanding.

Action
► This symbol denotes action to be taken.

Additional information
• This symbol denotes additional information or explanations.
The optical system of the Leica StereoZoom® line consists of two beam paths converging at 12°. Since the pairs of objectives are very close together, the stereomicroscopes can be constructed very “slim” towards the base. This has a number of advantages: less space required for use on bonders and machines, unimpeded working on the object, plenty of room for tools, free view of the object field.

The Greenough system provides a low-cost solution for correcting aberrations such as chromatism, curvature of the field of view and distortion. On the new Leica StereoZoom® line the optimally corrected centre of the objective is used for the image. This results in excellent optical performance with large, flat, distortion-free fields of vision and high-contrast images with maximum chromatic correction.

The Leica S4 E, S6 E, S6, S6 D and S8 APO stereomicroscopes including cold-light source and stand are made of antistatic material with a surface resistance of \(2 \times 10^{11}\) ohm/square and a discharge time from 1000V to 100V of under 2 seconds.

The Leica S6 T Terminator for problematical work areas and the T incident-light stand are made of antistatic material with a surface resistance of \(10^3\)–\(10^6\) ohm/square and a discharge time from 1000V to zero of under 0.1 seconds.

The Leica StereoZoom® S6 D and S8 APO models are equipped with a built-in video/photo tube that allows for simple, quick setting up of digital, film and analog video cameras.
World first Leica StereoZoom® S8 APO is the first stereomicroscope on the market with completely apochromatic corrected Greenough system. Apochromatic optics corrects perfectly chromatic aberrations, eliminates interfering color fringes and renders even the finest details ultra sharp. Contrast, brilliance, sharpness, resolution, color fidelity and reproduction accuracy are unsurpassed. The advantage of apochromatic correction is best observed in objects that have fine, low-contrast structures such as large animal cells, cilia plants or metallic microelectronic structures.

Features

<table>
<thead>
<tr>
<th>StereoZoom®</th>
<th>Zoom</th>
<th>Magnification</th>
<th>Viewing angle</th>
<th>Extras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica S4 E</td>
<td>4.8:1</td>
<td>6.3×–30×</td>
<td>38°</td>
<td>ErgoLens</td>
</tr>
<tr>
<td>Leica S6 E</td>
<td>6.3:1</td>
<td>6.3×–40×</td>
<td>38°</td>
<td>ErgoLens</td>
</tr>
<tr>
<td>Leica S6</td>
<td>6.3:1</td>
<td>6.3×–40×</td>
<td>60°</td>
<td>ErgoLens</td>
</tr>
<tr>
<td>Leica S6 T</td>
<td>6.3:1</td>
<td>6.3×–40×</td>
<td>38°</td>
<td>Terminator ErgoLens</td>
</tr>
<tr>
<td>Leica S6 D</td>
<td>6.3:1</td>
<td>6.3×–40×</td>
<td>38°</td>
<td>Video/photo tubes Ergonomic objectives</td>
</tr>
<tr>
<td>Leica S8 APO</td>
<td>8:1</td>
<td>10×–80×</td>
<td>38°</td>
<td>Apochromatic Greenough system Apochromatic zoom Apochromatic objectives Video/photo tube</td>
</tr>
</tbody>
</table>

StereoZoom® is registered as a trademark in the Principal Register of the US Patent and Trademark Office.
Design

1 StereoZoom® Optics carriers
2 Objectives
3 Eyepieces
4 Carriers/ Focus arms

Detailed Descriptions see Brochure M1-188-4en.

5 Focus columns
6 Incident-light bases
7 Transmitted-light bases
8 Stages
9 Stands (Swing arm, Flex arm)

Low Eyepoint Eyepieces

<table>
<thead>
<tr>
<th>Eyepieces, fixed</th>
<th>Eyepieces, adjustable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10×/23</td>
<td>10×/23</td>
</tr>
<tr>
<td>16×/16</td>
<td>16×/16</td>
</tr>
<tr>
<td>20×/12</td>
<td>20×/12</td>
</tr>
</tbody>
</table>

* Adjustable eyepieces accept reticles, see price list
High Eyepoint Eyepieces

Eyepieces, fixed
- 10×/23 10 446 326

Eyepieces, adjustable
- 10×/23 10 446 329*
- 16×/14B 10 445 301
- 25×/9.5B 10 445 302
- 40×/6B 10 445 303

*Adjustable eyepieces accept reticles, see price list

- Spacing Ring required with eyepiece
 - 10 445 301, 10 445 302, 10 445 303

All High Eyepoint Eyepieces include Eyeguards

Photo / Video documentation

Leica DC cameras

- Leica S4 E
- Leica S6 E
- Leica S6
- Leica S8 APO

Objectives

- for S4 E, S6 E, S6, S6 T
 - 0.32× 10 446 316
 - 0.5× 10 446 318
 - 0.63× 10 446 319
 - 0.75× 10 446 320
 - 1.6× 10 446 321
 - 2.0× 10 446 322

- Lens 10 446 324

Adjustable Lens

- 0.3×–0.4× 10 446 325

Ergolens

- 0.6×–0.75× 10 446 323
- 0.7×–1.0× 10 446 317

Objective for S8 APO

- 0.32× 10 446 334
- APO 0.63× 10 446 335
- APO 1.6× 10 446 336
- APO 2.0× 10 446 337

Leica StereoZoom User Manual
Design, Basic equipment

The components

1 Incident-light base with stage plate
2 Transmitted-light base with glass stage plate
3 Focus column with microscope carrier
4 StereoZoom® optics carrier
5 Optional additional objective
6 Eyepieces, fixed and/or adjustable
Assembly

Never loosen the 3 screws on the right-hand side of the focus column.

Focus column ➔ Incident-light base

- Remove stage plate.
- Insert 3 hexagon head screws through the underside of the baseplate and screw tight in the focus column.
- Replace stage plate.

Transmitted-light base ➔ Incident-light base

- Remove glass stage plate.
- Undo locking device.
- Place incident-light stand on the transmitted-light base and engage in the connecting screw.
- Close locking device.
- Replace glass stage plate.
- Insert universal light guide in the socket at the back (see user manual for the Leica L2 cold-light source).
Assembly

Optics carrier → Stand
- Insert optics carrier carefully in the microscope carrier.
- Fix optics carrier in the desired position with the clamping screw.

Additional objective (optional) → Optics carrier
- Screw selected objective tight in counterclockwise direction.

Lens shield (optional)
- Screw the lens shield tightly into the thread on the Stereo-Zoom® or onto the additional objective.

Eyepieces → Eyepiece tube
- Push eyepiece into the eyepiece tube as far as it will go.
- Check that it sits firmly and snugly.

The following eyepieces are available for StereoZoom®:
- 10×/23, 16×/16, 20×/12, fixed and adjustable with 12mm exit pupil
- 10×/23B eyepiece fixed and adjustable, for spectacle wearers, with 22mm exit pupil
- 16×/14B, 25×/9.5B, 40×/6B wide-field eyepieces, adjustable, with 22mm exit pupil. Spacing ring required for spectacle wearers
You can combine your StereoZoom® with a fixed and an adjustable eyepiece. Two adjustable eyepieces are required for equipment which has a reticle in an eyepiece for measurement or photography purposes. We recommend that you also equip the high-performance Leica StereoZoom® S8 APO with two adjustable eyepieces.

Leica L2 cold-light source → Stand

With its fibre-optic light guides the Leica L2 cold-light source is the illumination of choice for the Leica S4 E, S6 E, S6 and S6 T stereomicroscopes. Matching adapters are available for connecting the Leica L2 cold-light source to various stereomicroscope stands and for standalone operation.

Detailed information on the construction and use of the Leica L2 can be found in the relevant user manual.

Please note that the universal light guide on the Leica S8 APO can only be used with the sideways-mounted lamp arm.

High-performance lighting

For higher requirements, e.g. for photography or in combination with the Leica S8 APO, we offer a diverse, high-performance transmitted light stand and low-voltage lighting. Please ask your Leica advisor about the options.
The following graticules and stage micrometers are available for calibration:

Graticule 10mm/0.1mm
Graticule 5mm/0.1mm
Graticule 5mm/0.05mm
Graticule 100 div./0.002"
Graticule 100 div./0.001"
Graticule 150 div./0.0005"
Crosshair
Stage micrometer 50mm, 0.1/0.01mm divisions
Stage micrometer 1", 0.001" divisions

For photography, a 10× format reticle is available.

Two adjustable eyepieces are required for equipment which has a reticle in an eyepiece for measurement or photography purposes.

The graticules can be inserted into adjustable eyepieces and eyepieces for spectacle wearers:

► Ascertain with the aid of the stereomicroscope on which side the vacuum-metalized scale is located. The scale should be visible on the correct side.

► Pull out the insert from the bottom of the eyepiece and place it with the knurled side on the table.
Pick up the graticules at the edge so as not to leave fingerprints and slide into the holder from the side.

Put the insert back into the eyepiece and press firmly in place.

Insert the eyepiece into the eyepiece tube and line up the graticule by turning the eyepiece in the eyepiece tube.

The measuring process is described in the “Measuring” instructions.
Leica StereoZoom® S6 D and S8 APO are equipped with a built-in video/photo tube that allows for simple, quick setting up of digital, film and analog video cameras. Please ask your Leica advisor about the options.

You can find detailed information about Leica camera systems, accessories and image management software in the corresponding manuals.

- Remove the dust cover from the video/photo output.
- Always close the video/photo output with the dust cover if there is no camera attached.
- Attach appropriate video or photo objective, according to which camera is used (see scheme p.20).

Format reticle

The format reticle is used to test the sharpness and picture detail. Borderlines are displayed on the reticle for all film formats.

The left observation beam path and the photo output are aligned with one another. Always judge, therefore, the picture detail and the sharpness in the left eyepiece.

- Insert format reticle into an adjustable eyepiece (see p.18).
- Insert eyepiece with reticle into the left tube.
Standard controls and their functions

1 Magnification changer, right-hand pinion knob with magnification scale
2 S6 models: zoom limiter stop
3 Focusing drive
4 Fixing screw fixes the optics carrier in the microscope carrier
5 Adjustable eyepiece tubes: Interpupillary distance adjustable from 55–75mm
6 Eyepieces
7 Lamp bracket mounting thread (on both sides and at rear)
8 Socket for connecting for the Leica L2 universal light guide (not for Leica S8 APO)
9 Thread for additional objective/lens shield
Interpupillary distance and exit pupil

The **interpupillary distance** can be adjusted from 55–75mm.

The **exit pupil** is the distance between the eye and eyepiece. It is

- 12mm on the 10×/23, 16×/16 and 20×/12 standard eyepieces
- 22mm on the 10×/23B, fixed and adjustable, for spectacle wearers, and on the 16×/14B, 25×/9.5B and 40×/6B wide-field eyepieces for spectacle wearers

▶ Carefully put your eyes against the eyepieces and push the eyepiece tubes together or apart until with both eyes you can see a single shadow-free circular field.

Eyecups

The 10×/23B, 16×/14B, 25×/9.5B and 40×/6B eyepieces for spectacle wearers are supplied with detachable eyecups.

If you do not wear spectacles and want the eyecups to fit snugly round your eyes:

▶ Attach the eyecups to the eyepieces.

You wear spectacles for your work.

▶ Fold the eyecups downwards.

- The folded-down eyecups will protect your spectacle lenses against scratching.
Operating

Setting working distance and focusing

To focus the stereomicroscope, raise or lower it using the focusing drive until the desired object segment is in focus, i.e. inside the objective’s working distance. The working distances of the various objectives are listed in the tables on pages 38–40.

You can operate the focusing drive with either your right or left hand.

- Position the object under the objective.
- Select the minimum magnification.
- You should select the minimum magnification because it is easier to find the desired object segment in a large field of vision.
- Look into the eyepieces.
- Focus the object by turning the pinion knob.

Tension adjustment

Is the focusing drive too stiff/too loose or does the set-up slip down unassisted? You can tension the focusing drive to suit the weight of the set-up and your own needs:

- Take one pinion knob in each hand and turn in opposing directions until the desired tension is reached.
Tilting the optics carrier to a lateral position

The optics carrier can be tilted sideways if the user wants to work from a lateral position:

► Loosen the clamping bolt.
► Tilt the optic carrier sideways to the desired position.
► Tighten the clamping bolt.

Zoom magnification changer

All StereoZoom® models are equipped with a continuously adjustable magnification changer that can be operated with either the right or left hand. The right-hand pinion knob carries a magnification scale. The ranges are:
- 0.63 to 3 on the S4 E and
- 0.63 to 4 on the S6 models
- for S8 APO from 1 to 8

Changing magnification

The tables on pages 38 to 40 list the magnifications and field diameters as a function of magnification changer position and the eyepiece/objective combination being used.

► Look into the eyepieces.
► Bring the object into focus (p.24)
► Rotate the magnification changer until the desired magnification is achieved.
Setting the zoom limiter

On the S6 models and for the S8 APO it is possible to fix the maximum and minimum zoom. The same function can be used to set a fixed level of magnification.

Example: Setting a zoom range of 1 to 3.2

1. Set the minimum zoom level at 1 using the stop on the left-hand pinion knob:

- Loosen the hexagon head screws on the left-hand pinion knob using the Allen key supplied.

- Turn the right-hand pinion knob to 1.

- Move the stop on the left-hand pinion knob forwards until it touches the built-in zoom stop.

- Tighten the hexagon head screws.
2. Set the maximum zoom level at 3.2 using the stop on the right-hand pinion knob:

- Loosen the hexagon head screws on the right-hand pinion knob.

- Turn the right-hand pinion knob to 3.2.

- Move the stop on the right-hand pinion knob backwards until it touches the built-in zoom stop.

- Tighten the hexagon head screws.
Operating

Diopter adjustment and setting parfocality

If you adjust the diopters at the adjustable eyepiece as described below, the focus will remain constant, or parfocal, from minimum to maximum magnification. In other words, you will not have to refocus when you change magnification, but only when you want to examine a higher- or lower-positioned object segment. Make full use of this feature, which is not available on every stereo microscope.

- Diopter adjustment is possible within a range from +5 to −5.

Every user has to make the following adjustments only once.

If you are using a graticule, the diopter adjustment and parfocality setting procedure is slightly different to that described here. Please refer to the section on measurement in the graticule user manuals.

Setting up diopter with an adjustable and a fixed eyepiece

Preparations

- Set up illuminator.
- Set interpupillary distance (p.23).
- Set approximate working distance using the focusing drive (see p.38–40 for the working distances of the various objectives).

Bring the test object into focus

- Position a flat test object beneath the objective.
- Set the microscope to minimum magnification.
- Close the eye that is looking into the adjustable eyepiece and look into the fixed eyepiece with the other eye.
- View the test object and bring into focus with the focusing drive.
Without looking into the eye-pieces, turn the eyelens of the adjustable eyepiece as far as possible in the “+” direction.

Close the eye that is looking into the fixed eyepiece and look into the adjustable eyepiece with the other eye.

View the test object and slowly turn the eyelens clockwise (the “−” direction) until the object is in focus.

Set the microscope to maximum magnification.

View the test object with both eyes and bring it into sharp focus with the focusing drive.

View the object while zooming from minimum to maximum magnification.

The object should remain in constant focus (parfocal) at all times. If it does not, please repeat the procedure above.
Special notes

Setting up diopter with two adjustable eyepieces

Preparations

► For Leica S6 D and S8 APO, set pinion knob to Vis position.

► Set approximate working distance by means of focusing drive (working distances of various objectives see p.38–40).

► Set up lighting

► Set viewing distance (p.23).

► Set ‘0’ diopters on both eyepieces.

Focusing on test object

► Place flat test object under the objective.

► Set lowest magnification.

► View test object through the eyepiece and focus using the focusing drive.

► Set highest magnification.

► Optimize sharpness using the focusing drive.
Regulating diopters

► Set lowest magnification.

► Do not look into the eyepiece!
► Turn lens counterclockwise in the ‘+’ direction until it stops.

► Now look into the eyepiece.
► Close one eye.
► With the other eye, observe the test object and turn the lens slowly clockwise in the ‘−’ direction, until this eye sees the object clearly.
► Set the diopter for the other eye in the same way.

Testing parfocality

► Select highest magnification.
► View object and, if necessary, gently refocus.
► Adjust magnification changer from the lowest to the highest magnification.

• When doing this, the sharpness must remain constant over the entire zoom range (parfocal). Otherwise, please repeat the procedure.
It is possible to switch between the observation and photo beam paths. Light distribution:

- in ‘Vis’ position: 100% light in both eyepieces/no light in the video/photo beam path

- in ‘Doc’ position: 100% light in the right eyepiece/no light in the left eyepiece/100% light in the video/photo beam path

► When the picture detail and sharpness are set to your satisfaction, switch to the ‘Doc’ position and take your photo.
Special notes

What do I do if …

… the field of vision is in shadow?

Remedy
• Adjust interpupillary distance and ensure that it is correct (p.23).
• Check pupil position (p.23).

… the image will not stay in focus?

Remedy
• Insert eyepieces correctly (p.16).
• Correct diopter adjustment exactly as described (p.28–31).

… the focusing drive slides down or is difficult to turn?

Remedy
• Adjust tension (p.24).

If you encounter problems with electrically powered equipment, first check:
• that the voltage selector is set to the correct voltage.
• that the mains power switch is in the ‘on’ position.
• that the mains power cable is correctly connected.
• that all connector cables are correctly connected.
• that none of the fuses have blown.

… the image is too dark?

Remedy
• Set regulating knob high enough.

Photographs are blurred.

Remedy
• Focus precisely (p.24).
• Focus on reticles and carry out diopters-correction exactly according to the instructions (p.30).
• Insert eyepieces all the way in (p.16).
• Check that the reticles are firmly placed in the eyepiece (p.18).

No image on the film

Remedy
• Switch light divider on the photo tube to the ‘Doc’ position (p.32).
In this section we would like to explain how you can take care of your microscope and give you a few tips on cleaning.

Protect your microscope

- against moisture, vapours, acids, alkalis and caustic substances.

Never keep chemicals close to your microscope.

- against improper handling.

Never fit other equipment connectors or dismantle optical systems and mechanical parts unless the user manual gives express instructions for doing so.

- against oil and grease.

Never grease guides and mechanical parts.

Dust and dirt impair your results.

Therefore:

- Cover your microscope with its dust cover during breaks.

- Put dust covers over tube openings, eyepieces, and eyepiece tubes without eyepieces.

- Remove dust with a rubber blower and soft brush.

- Clean eyepieces and objectives with special optical cleaning cloths and pure alcohol.

- Keep accessories in a dust-free environment when not in use.
Various components are made of plastic or are plastic-coated to make them pleasant to touch and handle. However, incorrect cleaning with unsuitable detergents can damage the plastic. Please observe the following do’s and don’ts:

Never clean plastics

- in an ultrasonic cleaner. The plastic may become brittle and eventually break.
- with caustic or acetone-containing substances such as ether substitute.
- with any other solvents except ethanol and isopropanol.

To clean plastics safely use

- warm soapy water, rinsing the plastic afterwards with distilled water.
- ethanol (industrial alcohol) and isopropanol.

Always take appropriate safety precautions when using ethanol and isopropanol.
You are working with a high-performance precision instrument, whose quality we guarantee.

The warranty covers manufacturing and materials faults, but not damage resulting from negligence or incorrect handling.

If you treat your valuable optical instrument with due care, it will repay you with the decades of reliable precision for which Leica instruments are renowned.

However, should you encounter problems with your microscope at any time, please contact your local Leica representative or Leica Microsystems Ltd, Heerbrugg, Switzerland.
Calculating total magnification and field diameter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_O)</td>
<td>Objective magnification</td>
</tr>
<tr>
<td>(M_E)</td>
<td>Eyepiece magnification</td>
</tr>
<tr>
<td>(z)</td>
<td>Magnification changer setting</td>
</tr>
<tr>
<td>(N_{FOV})</td>
<td>Eyepiece field number. Field numbers are printed on the eyepieces: 10(\times)/23, 16(\times)/16, 20(\times)/12, 10(\times)/23B, 16(\times)/14B, 25(\times)/9.5B, 40(\times)/6B</td>
</tr>
</tbody>
</table>

Example:

- \(M_O\) 1.6\(\times\) objective
- \(M_E\) 20\(\times\)/12 eyepiece
- \(z\) Zoom position 4.0

Magnification in the binocular tube:

\[
M_{TOT \ VIS} = M_O \times M_E \times z \\
1.6 \times 20 \times 4 = 128
\]

Field diameter in the object:

\[
\varnothing_{OF} = \frac{N_{FOV}}{M_O \times z} \\
\frac{12}{1.6 \times 4} = 1.9\text{mm}
\]
<table>
<thead>
<tr>
<th>Working distance</th>
<th>Eyepieces</th>
<th>0.32x</th>
<th>0.5x</th>
<th>0.63x</th>
<th>0.75x</th>
<th>1.6x</th>
</tr>
</thead>
<tbody>
<tr>
<td>110mm</td>
<td>10 466 332</td>
<td>6.3</td>
<td>36.5</td>
<td>2.0</td>
<td>115.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>10 466 333</td>
<td>0.8</td>
<td>28.8</td>
<td>2.6</td>
<td>88.5</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>10×/23</td>
<td>1.0</td>
<td>23.0</td>
<td>3.2</td>
<td>71.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>10×/23B</td>
<td>1.6</td>
<td>14.4</td>
<td>5.1</td>
<td>45.1</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>16×/16</td>
<td>2.5</td>
<td>9.2</td>
<td>8.0</td>
<td>28.8</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>10 466 326</td>
<td>3.2</td>
<td>7.2</td>
<td>10.2</td>
<td>22.5</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>10 466 329</td>
<td>4.0</td>
<td>5.8</td>
<td>12.8</td>
<td>20.0</td>
<td>11.5</td>
</tr>
<tr>
<td>150mm</td>
<td>10 466 332</td>
<td>0.63</td>
<td>10.1</td>
<td>25.3</td>
<td>3.2</td>
<td>80.0</td>
</tr>
<tr>
<td></td>
<td>10 466 333</td>
<td>0.8</td>
<td>12.8</td>
<td>4.1</td>
<td>62.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>10×/23</td>
<td>1.6</td>
<td>25.6</td>
<td>8.2</td>
<td>31.2</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>10×/23B</td>
<td>2.0</td>
<td>13.0</td>
<td>10.2</td>
<td>25.1</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>16×/16</td>
<td>2.5</td>
<td>40.0</td>
<td>6.4</td>
<td>12.8</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>10 466 354</td>
<td>3.2</td>
<td>51.2</td>
<td>5.0</td>
<td>16.4</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>10 466 355</td>
<td>4.0</td>
<td>64.0</td>
<td>4.0</td>
<td>20.5</td>
<td>32.0</td>
</tr>
<tr>
<td>200mm</td>
<td>10 466 332</td>
<td>0.63</td>
<td>12.6</td>
<td>19.0</td>
<td>4.0</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td>10 466 333</td>
<td>0.8</td>
<td>16.0</td>
<td>5.1</td>
<td>47.1</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>10×/12</td>
<td>1.0</td>
<td>20.0</td>
<td>6.4</td>
<td>37.5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>10×/14B</td>
<td>1.6</td>
<td>25.6</td>
<td>8.2</td>
<td>23.5</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>20×/12</td>
<td>2.0</td>
<td>32.0</td>
<td>6.0</td>
<td>12.8</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>25×/9.5B</td>
<td>2.5</td>
<td>50.0</td>
<td>4.8</td>
<td>16.0</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>10 465 301</td>
<td>3.2</td>
<td>51.2</td>
<td>4.4</td>
<td>16.4</td>
<td>25.6</td>
</tr>
<tr>
<td>250mm</td>
<td>10 466 332</td>
<td>0.63</td>
<td>15.8</td>
<td>15.0</td>
<td>5.0</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>10 466 333</td>
<td>0.8</td>
<td>20.0</td>
<td>6.4</td>
<td>37.1</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>10×/12</td>
<td>1.0</td>
<td>25.0</td>
<td>9.5</td>
<td>29.7</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>10×/14B</td>
<td>1.6</td>
<td>31.3</td>
<td>7.6</td>
<td>23.8</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>20×/12</td>
<td>2.0</td>
<td>50.0</td>
<td>4.8</td>
<td>16.0</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>25×/9.5B</td>
<td>2.5</td>
<td>62.5</td>
<td>3.8</td>
<td>20.0</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>10 465 302</td>
<td>3.2</td>
<td>80.0</td>
<td>3.0</td>
<td>25.6</td>
<td>9.3</td>
</tr>
<tr>
<td>300mm</td>
<td>10 466 332</td>
<td>0.63</td>
<td>15.8</td>
<td>15.0</td>
<td>5.0</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>10 466 333</td>
<td>0.8</td>
<td>20.0</td>
<td>6.4</td>
<td>37.1</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>10×/12</td>
<td>1.0</td>
<td>25.0</td>
<td>9.5</td>
<td>29.7</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>10×/14B</td>
<td>1.6</td>
<td>31.3</td>
<td>7.6</td>
<td>23.8</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>20×/12</td>
<td>2.0</td>
<td>50.0</td>
<td>4.8</td>
<td>16.0</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>25×/9.5B</td>
<td>2.5</td>
<td>62.5</td>
<td>3.8</td>
<td>20.0</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>10 465 302</td>
<td>3.2</td>
<td>80.0</td>
<td>3.0</td>
<td>25.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Field diameter mm

- **10×/23**: 3.5, 12.8, 10.1
- **10×/23B**: 2.4, 7.0, 6.3
- **16×/16**: 2.5, 10.1, 11.2
- **20×/12**: 1.5, 3.0, 3.0
- **16×/14B**: 1.5, 3.0, 2.8
- **25×/9.5B**: 1.5, 3.0, 1.5
- **40×/6B**: 1.5, 3.0, 1.5

Optical Data

Leica StereoZoom User Manual
<table>
<thead>
<tr>
<th>Total magnification</th>
<th>Field diameter mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0x</td>
<td></td>
<td>2.0x</td>
<td></td>
<td>2.0x</td>
<td></td>
<td>2.0x</td>
<td></td>
<td>2.0x</td>
<td></td>
</tr>
<tr>
<td>35mm</td>
<td>18.3</td>
<td>2.5</td>
<td>92.0</td>
<td>1.8</td>
<td>127.8</td>
<td>4.7</td>
<td>48.9</td>
<td>3.5</td>
<td>65.7</td>
</tr>
<tr>
<td>200mm</td>
<td>20.0</td>
<td>11.5</td>
<td>59.0</td>
<td>2.8</td>
<td>82.1</td>
<td>7.5</td>
<td>30.7</td>
<td>5.6</td>
<td>41.1</td>
</tr>
<tr>
<td>390mm</td>
<td>25.0</td>
<td>9.2</td>
<td>46.9</td>
<td>3.5</td>
<td>65.7</td>
<td>9.4</td>
<td>24.5</td>
<td>7.0</td>
<td>32.9</td>
</tr>
<tr>
<td>77mm</td>
<td>32.0</td>
<td>7.2</td>
<td>37.1</td>
<td>4.5</td>
<td>51.1</td>
<td>12.0</td>
<td>19.2</td>
<td>9.0</td>
<td>25.6</td>
</tr>
<tr>
<td>137mm</td>
<td>40.0</td>
<td>5.8</td>
<td>29.5</td>
<td>5.6</td>
<td>41.1</td>
<td>15.0</td>
<td>15.3</td>
<td>11.2</td>
<td>20.5</td>
</tr>
<tr>
<td>48mm</td>
<td>50.0</td>
<td>4.6</td>
<td>23.5</td>
<td>7.0</td>
<td>32.9</td>
<td>18.8</td>
<td>12.2</td>
<td>14.0</td>
<td>16.4</td>
</tr>
<tr>
<td>96mm</td>
<td>64.0</td>
<td>3.6</td>
<td>18.4</td>
<td>9.0</td>
<td>25.6</td>
<td>24.0</td>
<td>9.6</td>
<td>17.9</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
<td>2.9</td>
<td>15.6</td>
<td>14.7</td>
<td>11.2</td>
<td>20.5</td>
<td>30.0</td>
<td>7.7</td>
<td>22.4</td>
</tr>
</tbody>
</table>
Optical Data, StereoZoom® S8 APO

<table>
<thead>
<tr>
<th>Working distance</th>
<th>Apochromats</th>
<th>Achromat</th>
<th>Achromat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.63×</td>
<td>1.6×</td>
<td>2.0×</td>
</tr>
<tr>
<td></td>
<td>75mm</td>
<td>101mm</td>
<td>27mm</td>
</tr>
</tbody>
</table>

Eyepieces

<table>
<thead>
<tr>
<th></th>
<th>Total magnification</th>
<th>Field diameter mm</th>
<th>Total magnification</th>
<th>Field diameter mm</th>
<th>Total magnification</th>
<th>Field diameter mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 46 332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10×/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10×/23B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16×/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25×/9.5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 46 302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40×/6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 445 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Diameter

- **Field diameter mm**
- **Total magnification**

Leica StereoZoom User Manual
Dimensions, Leica S4 E, S6 E, S6 T

with incident-light stand
Dimensions, Leica S4 E, S6 E, S6 T

with transmitted-light stand

Leica S4 E, S6 E, S6 T

Dimensions in mm

Leica StereoZoom User Manual
Dimensions, Leica S6

with inclining focusing drive

Leica S6

Dimensions in mm

Dimensions, Leica S6 D

with incident-light stand

Leica S6 D

Dimensions in mm
Dimensions, Leica S6 D

with incident-light stand

Leica S6 D

Dimensions in mm
Dimensions, Leica S8 APO

with incident-light stand

Dimensions in mm
Dimensions, Leica S8 APO

with transmitted-light stand

Dimensions in mm
Leica Microsystems worldwide

Leica Microsystems is active in microscopy, sample preparation, image analysis, confocal laser technology, medical equipment and equipment for the semiconductor industry. With headquarters in Wetzlar, Germany, this international technology group has grown from five companies with a long tradition – Wild, Leitz, Reichert, Jung and Cambridge Instruments.

Made by Leica
Leica Microsystems develops high-utility end-to-end solutions and innovative cutting-edge technologies of internationally renowned quality. The same high quality standards are in force in each of the Group’s 11 production sites in seven countries, making the name Leica synonymous with quality.

Leica for you
Technology is one key factor in the success of Leica Microsystems, customer focus the other. Our friendly staff offer competent, on-the-spot advice and service in your own language. Naturally we also cater reliably and without fuss for all customer wishes and ensure that your goods arrive on time and in perfect condition.

www.stereozoom.com
You will find valuable information on the products and services of Leica Microsystems on the Internet as well as contact information for distributors near you. Visit us to get more information on the new StereoZoom® line.
Leica Microsystems – the brand for outstanding products

Leica Microsystems’ Mission is to be the world’s first-choice provider of innovative solutions to our customers’ needs for vision, measurement, lithography and analysis of microstructures.

Leica, the leading brand for microscopes and scientific instruments, has developed from five brand names, all with a long tradition: Wild, Leitz, Reichert, Jung and Cambridge Instruments. Leica symbolizes not only tradition, but also innovation.

Leica Microsystems – an international company with a strong network of customer services

Australia: Gladesville, NSW
Tel. +1 800 625 286
Fax +61 2 9817 8358

Austria: Vienna
Tel. +43 1 486 80 50 0
Fax +43 1 486 80 50 30

Canada: Richmond Hill/Ontario
Tel. +1 905 762 20 00
Fax +1 905 762 4163

China: Hong Kong
Tel. +852 564 6699
Fax +852 564 4163

Denmark: Herlev
Tel. +45 44 5401 01
Fax +45 44 5401 11

France: Rueil-Malmaison
Tel. +33 1 4732 8585
Fax +33 1 4732 8586

Germany: Bensheim
Tel. +49 6251 1360
Fax +49 6251 136 155

Italy: Milan
Tel. +39 02 574 966
Fax +39 02 5740 3273

Japan: Tokyo
Tel. +81 3 543 596 09
Fax +81 3 543 596 15

Korea: Seoul
Tel. +82 2 514 6543
Fax +82 2 514 6548

Netherlands: Rijswijk
Tel. +31 70 41 32 130
Fax +31 70 41 32 109

Portugal: Lisbon
Tel. +35 1 213 889 112
Fax +35 1 213 854 668

Singapore:
Tel. +65 6 77 97 823
Fax +65 6 77 30 628

Spain: Barcelona
Tel. +34 93 494 9530
Fax +34 93 494 9532

Sweden: Sollentuna
Tel. +46 8 625 45 45
Fax +46 8 625 45 10

Switzerland: Glattbrugg
Tel. +41 1 809 34 34
Fax +41 1 809 34 44

United Kingdom: Milton Keynes
Tel. +44 1908 666 663
Fax +44 1908 609 992

USA: Bannockburn/Illinois
Tel. +1 800 248 0123
Fax +1 847 405 0164

and representatives of Leica Microsystems in more than 100 countries.

The companies of the Leica Microsystems Group operate internationally in five business segments, where we rank with the market leaders.

Microscopy
Our expertise in microscopy is the basis for all our solutions for visualization, measurement and analysis of microstructures in life sciences and industry.

Specimen Preparation
We specialize in supplying complete solutions for histology and cytopathology.

Imaging Systems
With confocal laser technology and image analysis systems, we provide three-dimensional viewing facilities and offer new solutions for cytogenetics, pathology and material sciences.

Medical Equipment
Innovative technologies in our surgical microscopes offer new therapeutic approaches in microsurgery. With automated instruments for ophthalmology, we enable new diagnostic methods to be applied.

Semiconductor Equipment
Our automated, leading-edge measurement and inspection systems and our E-beam lithography systems make us the first choice supplier for semiconductor manufacturers all over the world.

Leica Microsystems (Switzerland) Ltd
Business Unit SM
CH-9435 Heerbrugg

Telephone +41 71 726 33 33
Fax +41 71 726 33 99
www.leica-microsystems.com
www.stereomicroscopy.com

Illustrations, descriptions and technical data are not binding and may be changed without notice.

M2-158-Gen © Leica Microsystems (Switzerland) Ltd • CH-9435 Heerbrugg, 2002 – BV

The Business Units in Leica Microsystems hold the management system certificates for the international standards ISO 9001 and ISO 14001 relating to quality management, quality assurance and environmental management.