Macromolecular CryoCrystallography @ Synchrotrons

Protocols and Techniques

Thayumanasamy “Soma” Sundaram
Institute of Molecular Biophysics
Florida State University
Tallahassee, FL 32306-4380
soma@sb.fsu.edu | www.sb.fsu.edu/~soma

Overview

- Biological Macromolecules
 - Proteins, Nucleic Acids, Lipids, Sugars, & Complexes
- Single Crystal X-Ray Diffraction
 - Not powder or fiber or solution scattering
- Synchrotron Data Collection
 - Techniques
- CryoCrystallography
 - Protocols & Advantages
- Examples of Data

Biological Macromolecules

- Proteins
 - 20 Naturally Occurring Amino Acids
 - Anywhere from 20 to ~1500 Amino Acids
- Nucleic Acids
 - 4 Bases
 - DNA/RNA
- Lipids & Sugars
- Protein + NA Complexes
- Membrane Proteins

Single Crystal X-Ray Diffraction

- Provides a Complete Structural Information
- Needs a Crystal (A Challenge)
 - Still takes 6-9 months to get a crystallization condition
- Unit Cell Dimensions:
 - 10 Å (Proteins) | Small Molecules (1 Å)
 - 100 Å (Virus & Complexes)
- Crystal Dimensions: 0.05-1.0mm
- Use 1-2 Å X-Ray Radiation (Cu: 1.54 Å; 8 keV)
- Bond Lengths: ~1.0 – 2.0 Å
- Structural Repository: www.rcsb.org/pdb
 - 34,700 (X-Ray), 6000 (NMR), 225 (EM+)

X-Ray Source 1

- Home Source
 - Rotating Anode
 - Multi-layer Mirror
 - Wide Usage
 - Easy Access
 - Fixed Wavelength
 - Cu (1.54 Å)
 - Cr (2.29 Å)
 - Mo (0.71 Å)

X-Ray Source 2

- Synchrotron
 - Broad Wavelength Selection
 - Bending Magnet & Insertion Devices
 - ~1000 Times Intense
 - Low Divergence (mrad)
 - Small Beam Size (~0.1 x 0.1 mm)
 - Access
 - Travel/Planning

2007 FLAVS & FMS
UCF, Orlando, FL
March 12, 2007
Brilliance* of X-Ray Sources

- Photons/s/mm²/mrad/0.1% bandpass

Sealed Tube Rot Anode Bend Mag Wiggler Benders

- Brilliance

1.0E+07 1.0E+09 1.0E+11 1.0E+13 1.0E+15 1.0E+17 1.0E+19

Why CryoCrystallography?

- A Specialized Field is Now Routine
- 5% in 1995 and >90% in 2006
- But Macromolecular Crystals are
 - Radiation Sensitive
 - Contain 40-70% Solvent
 - Contain Flexible Regions
 - Low Scattering Cross-section

CryoCrystallography

- Breakthrough in 1990
 - T.-Y. Teng (Cornell)
 - Wire Loop
 - Viscous Hydrophilic Solvent
 - Free Standing Crystal
 - Flash Cooling

CryoCrystallography

- Advantages
 - For Macromolecular Crystals
 - Reduces Free Radical Diffusion
 - Reduces Stress on Crystals
 - Reduces Thermal Motion
 - Reduces Extra Scattering

CryoCrystallography

- Cryoprotectants
 - Alcohols
 - Glycerol (20%)
 - Poly Ethylene Glycols (20-30%)
 - 2-Methyl-2,4-pentanediol (30%)
 - Salts
 - Sodium Formate (3M)
 - Lithium Sulfate (2M)

*Photons/s/mm²/mrad/0.1% bandpass
CryoCrystallography

- Problems
 - Crystal Damage
 - Crystal Cracks
 - Chemical Reaction
 - Disorder (Mosaicity)
 - Other
 - Snow Ice
 - Embedded Ice

- Remedies
 - Annealing
 - Screen Solvents
 - Controlled Humidity
 - Protein ↓
 - Water ↑

Problems
- Embedded Ice
 - Hard to Remove
 - Anneal & Flash Cool
 - Problem w/ Lattice
- Snow Ice
 - Nuisance
 - Doesn’t Affect Lattice
 - Problem w/ Processing

Example: Enzyme
- Arginine Kinase 293°K | 12 min
 - 0 h (Home)
 - 12 h (Home), More needed
- Arginine Kinase 100°K | 15 min
 - 0 h (Home)
 - 12 h (Home)
 - 15 h (No LN2)
- Arginine Kinase 100°K | 30 sec
 - 0 h (NSLS – BM-12C)
 - 1.5 h (NSLS – BM-13C)

Example: Virus
- AAV2 293°K | Ambient
 - 24 h (Home | Capillary)
- AAV2 277°K | 4°C
 - 30 s (CHESS | F1 | Capillary)
 - Survived 3 exposures
- AAV2 100°K | Cryo
 - 70 s (CHESS | F1 | CryoLoop)
 - Survived >180 exposures

Example: Protein
- Fibroblast Growth Factor
 - 100°K
 - 40 min (Home)
- Fibroblast Growth Factor
 - 1.1 -1.2Å Diffraction
 - Offset Detector
 - 1.1 -1.2Å Diffraction

Example: Enzyme
- Arginine Kinase 293°K | 12 min
 - 0 h (Home)
 - 12 h (Home), More needed
- Arginine Kinase 100°K | 15 min
 - 0 h (Home)
 - 12 h (Home)
 - 15 h (No LN2)
- Arginine Kinase 100°K | 30 sec
 - 0 h (NSLS – BM-12C)
 - 1.5 h (NSLS – BM-13C)

Example: Virus
- AAV2 293°K | Ambient
 - 24 h (Home | Capillary)
- AAV2 277°K | 4°C
 - 30 s (CHESS | F1 | Capillary)
 - Survived 3 exposures
- AAV2 100°K | Cryo
 - 70 s (CHESS | F1 | CryoLoop)
 - Survived >180 exposures

Example: Protein
- Fibroblast Growth Factor
 - 100°K
 - 40 min (Home)
- Fibroblast Growth Factor
 - 1.1 -1.2Å Diffraction
 - Offset Detector
 - 1.1 -1.2Å Diffraction

Problems
- Embedded Ice
 - Hard to Remove
 - Anneal & Flash Cool
 - Problem w/ Lattice
- Snow Ice
 - Nuisance
 - Doesn’t Affect Lattice
 - Problem w/ Processing

CryoTools
- CryoCap
- CryoLoop
- CryoVial
- CryoTong
- CryoShipper
- CryoPuck

References:
- Thorne et al, MIDS 439 (2005)
SER-CAT Beamline @ APS

Automounter | BCSB

Remote Access | SSRL

Acknowledgements
- Michael Chapman, OHSU, Portland, OR
- Genfa Zhou, Qing Xie, & Jeff Bush
- Michael Blaber, CoM, FSU
- Matthew Bernett, Jihun Lee, & Sumit Khurana
- Hong Li, FSU
- Song Xue and Sri Vidya
- SER-CAT, APS, Argonne, IL
- Inst Molecular Biophysics
- Florida State University

Contact Information
Thayumanasamy “Soma” sundaram
414 Institute of Molecular Biophysics
Florida State University
Tallahassee, FL 32306-4380
Phone: 850-644-6448 | Fax: 850-644-7244
E-mail: somash@sb.fsu.edu
Web: www.sb.fsu.edu/~soma
Web: www.sb.fsu.edu/~xray